Bitget App
Trading inteligente
Comprar criptoMercadosTradingFuturosBotsRendaCopy
Preço de Bonk on Base

Preço de Bonk on BaseBONK

focusIcon
subscribe
Não listada
Moeda de cotação:
EUR
Os dados são obtidos de fornecedores terceirizados. Esta página e as informações fornecidas não endossam nenhuma criptomoeda específica. Deseja operar moedas listadas?  Clique aqui

Como é a sua opinião sobre Bonk on Base hoje?

IconGoodBomIconBadRuim
Observação: essas informações servem apenas como referência.

Preço de Bonk on Base hoje

O preço em tempo real do token Bonk on Base é de €0.{8}1734 por (BONK / EUR). Sua capitalização de mercado atual é de €0.00 EUR. Seu volume de trading em 24 horas é de €840.75 EUR. O preço de BONK em EUR atualizado em tempo real. Bonk on Base variou -1.69% nas últimas 24 horas. Sua oferta circulante atual é de 0 .

Qual é o preço mais alto do token BONK?

BONK tem uma máxima histórica de €0.{6}1242, registrada em 2024-04-22.

Qual é o preço mais baixo do token BONK?

BONK tem uma mínima histórica (ATL) de €0.{8}1603, registrada em 2025-03-13.
Calcular o lucro de Bonk on Base

Previsão de preço do token Bonk on Base

Qual será o preço do token BONK em 2026?

Com base no modelo de previsão do desempenho histórico de preços de BONK, estima-se que o preço de BONK atinja €0.{8}1768 em 2026.

Qual será o preço do token BONK em 2031?

Em 2031, espera-se que o preço de BONK varie em +46.00%. Ao final de 2031, estima-se que o preço de BONK atinja €0.{8}4427, com um ROI acumulado de +157.84%.

Histórico de preços de Bonk on Base (EUR)

O preço de Bonk on Base variou -67.25% no último ano. O preço mais alto de em EUR no último ano foi €0.{6}1242 e o preço mais baixo de em EUR no último ano foi €0.{8}1603.
PeríodoVariação de preço (%)Variação de preço (%)Preço mais baixoO preço mais baixo de {0} no período correspondente.Preço mais alto Preço mais alto
24h-1.69%€0.{8}1667€0.{8}1755
7d-6.45%€0.{8}1667€0.{8}1932
30d-18.45%€0.{8}1603€0.{8}2424
90d-64.77%€0.{8}1603€0.{8}6105
1y-67.25%€0.{8}1603€0.{6}1242
Todo o período-67.25%€0.{8}1603(2025-03-13, 19 dia(s) atrás )€0.{6}1242(2024-04-22, 344 dia(s) atrás )

Informações de mercado de Bonk on Base

Bonk on Base - Histórico de capitalização de mercado da empresa

Capitalização de mercado
--
Capitalização de mercado totalmente diluída
€173,357.22
Classificação de mercado
Comprar cripto

Bonk on Base - Total de ativos por concentração

Baleias
Investidores
Varejo

Bonk on Base - Endereços por tempo de manutenção

Holders
Cruisers
Traders
Gráfico de preços ao vivo de coinInfo.name (12)
loading

Avaliações de Bonk on Base

Média de avaliações da comunidade
4.6
100 avaliações
Este conteúdo é apenas para fins informativos.

Novas listagens na Bitget

Novas listagens

Perguntas frequentes

Qual é o preço atual de Bonk on Base?

O preço em tempo real de Bonk on Base é €0 por (BONK/EUR), com uma capitalização de mercado atual de €0 EUR. O valor de Bonk on Base sofre oscilações frequentes devido às atividades 24h do mercado de criptomoedas. O preço atual e os dados históricos de Bonk on Base estão disponíveis na Bitget.

Qual é o volume de trading em 24 horas de Bonk on Base?

Nas últimas 24 horas, o volume de trading de Bonk on Base foi €840.75.

Qual é o recorde histórico de Bonk on Base?

A máxima histórica de Bonk on Base é €0.{6}1242. Essa máxima histórica é o preço mais alto para Bonk on Base desde que foi lançado.

Posso comprar Bonk on Base na Bitget?

Sim, atualmente, Bonk on Base está disponível na Bitget. Para informações detalhadas, confira nosso guia Como comprar .

É possível obter lucros constantes ao investir em Bonk on Base?

Claro, a Bitget fornece uma plataforma de trading estratégico com robôs de trading para automatizar suas operações e aumentar seus lucros.

Onde posso comprar Bonk on Base com a menor taxa?

Temos o prazer de anunciar que a plataforma de trading estratégico já está disponível na corretora da Bitget. A Bitget é líder de mercado no que diz respeito a taxas de trading e profundidade, o que garante investimentos lucrativos para os traders.

Onde posso comprar cripto?

Compre cripto no app da Bitget
Crie uma conta em poucos minutos para comprar cripto com cartão de crédito ou transferência bancária.
Download Bitget APP on Google PlayDownload Bitget APP on AppStore
Opere na Bitget!
Deposite cripto na Bitget e aproveite a alta liquidez e as baixas taxas de trading.

Seção de vídeos: verificação e operações rápidas

play cover
Como concluir a verificação de identidade na Bitget e se proteger contra golpes
1. Faça login na sua conta Bitget.
2. Se você for novo na Bitget, assista ao nosso tutorial sobre como criar uma conta.
3. Passe o mouse sobre o ícone do seu perfil, clique em "Não verificado" e clique em "Verificar".
4. Escolha seu país ou região emissora, o tipo de documento de identidade e siga as instruções.
5. Selecione como prefere concluir sua verificação: pelo app ou computador.
6. Insira seus dados, envie uma cópia do seu documento de identidade e tire uma selfie.
7. Envie sua solicitação e pronto. Verificação de identidade concluída!
Os investimentos em criptomoedas, incluindo a compra de Bonk on Base na Bitget, estão sujeitos a risco de mercado. A Bitget fornece maneiras fáceis e convenientes para você comprar Bonk on Base. Fazemos o possível para informar totalmente nossos usuários sobre cada criptomoeda que oferecemos na corretora. No entanto, não somos responsáveis ​​pelos resultados que possam advir da sua compra Bonk on Base. Esta página e qualquer informação incluída não são um endosso de investimento ou a nenhuma criptomoeda em particular.

Bitget Insights

Crypto_inside
Crypto_inside
2h
What is IQ..🤔🤔??
Intelligence Quotient (IQ) is a score derived from standardized tests designed to measure human intelligence. IQ tests assess various cognitive abilities, such as: Components of IQ Tests: 1. Verbal Comprehension: Measures ability to understand and use language. 2. Perceptual Reasoning: Assesses ability to reason, form concepts, and solve problems. 3. Working Memory: Evaluates ability to hold and manipulate information in short-term memory. 4. Processing Speed: Measures ability to quickly and accurately process visual information. IQ Score Interpretation: 1. Average IQ: 85-115 (68% of population) 2. Above Average IQ: 116-130 (16% of population) 3. Gifted IQ: 131-145 (2% of population) 4. Highly Gifted IQ: 146-160 (0.1% of population) 5. Profoundly Gifted IQ: 161-175 (0.01% of population) Criticisms and Limitations of IQ Tests: 1. Cultural Bias: IQ tests may favor certain cultural or socioeconomic groups. 2. Narrow Scope: IQ tests only measure specific aspects of intelligence. 3. Context-Dependent: IQ scores can be influenced by environmental factors. 4. Oversimplification: IQ scores can oversimplify complex cognitive abilities. Types of Intelligence: 1. Fluid Intelligence: Ability to reason, think abstractly, and solve problems. 2. Crystallized Intelligence: Ability to use learned knowledge and experience. 3. Emotional Intelligence: Ability to recognize and understand emotions. Notable Theories and Models: 1. Gardner's Multiple Intelligences: Proposes multiple types of intelligence, such as linguistic, spatial, and bodily-kinesthetic. 2. Sternberg's Triarchic Theory: Suggests three components of intelligence: analytical, creative, and practical. IQ tests provide a limited snapshot of cognitive abilities and should not be considered the sole measure of intelligence or potential. Thank you...🙂 $BTC $ETH $SOL $PI $AI $XRP $BGB $BNB $ONDO $DOGE $SHIB $BONK $FLOKI $U2U $WUF $PARTI $WHY $SUNDOG
SUNDOG-0.75%
BTC+1.72%
Crypto_inside
Crypto_inside
2h
Machine learning ❌ Traditional learning. 🧐😵‍💫
Machine learning and traditional learning are two distinct approaches to learning and problem-solving. Traditional Learning: 1. Rule-based: Traditional learning involves explicit programming and rule-based systems. 2. Human expertise: Traditional learning relies on human expertise and manual feature engineering. 3. Fixed models: Traditional learning uses fixed models that are not updated automatically. Machine Learning: 1. Data-driven: Machine learning involves learning from data and improving over time. 2. Algorithmic: Machine learning relies on algorithms that can learn from data and make predictions. 3. Adaptive models: Machine learning uses adaptive models that can update automatically based on new data. Key Differences: 1. Learning style: Traditional learning is rule-based, while machine learning is data-driven. 2. Scalability: Machine learning can handle large datasets and complex problems, while traditional learning is limited by human expertise. 3. Accuracy: Machine learning can achieve higher accuracy than traditional learning, especially in complex domains. Advantages of Machine Learning: 1. Improved accuracy: Machine learning can achieve higher accuracy than traditional learning. 2. Increased efficiency: Machine learning can automate many tasks, freeing up human experts for more complex tasks. 3. Scalability: Machine learning can handle large datasets and complex problems. Disadvantages of Machine Learning: 1. Data quality: Machine learning requires high-quality data to learn effectively. 2. Interpretability: Machine learning models can be difficult to interpret and understand. 3. Bias: Machine learning models can perpetuate biases present in the training data. When to Use Machine Learning: 1. Complex problems: Machine learning is well-suited for complex problems that require pattern recognition and prediction. 2. Large datasets: Machine learning can handle large datasets and identify trends and patterns. 3. Automating tasks: Machine learning can automate many tasks, freeing up human experts for more complex tasks. When to Use Traditional Learning: 1. Simple problems: Traditional learning is well-suited for simple problems that require explicit programming and rule-based systems. 2. Small datasets: Traditional learning is suitable for small datasets where machine learning may not be effective. 3. Human expertise: Traditional learning relies on human expertise and manual feature engineering, making it suitable for domains where human expertise is essential. Thank you...🙂 $BTC $ETH $SOL $PI $AI $XAI $BGB $BNB $DOGE $DOGS $SHIB $BONK $MEME $XRP $ADA $U2U $WUF $PARTI $WHY
BTC+1.72%
BGB+3.88%
Crypto_inside
Crypto_inside
2h
What is Q-learning...🤔🤔??
Q-learning is a type of reinforcement learning algorithm used in machine learning and artificial intelligence. It's a model-free, off-policy learning algorithm that helps agents learn to make decisions in complex, uncertain environments. Key Components: 1. Agent: The decision-maker that interacts with the environment. 2. Environment: The external system with which the agent interacts. 3. Actions: The decisions made by the agent. 4. Rewards: The feedback received by the agent for its actions. 5. Q-function: A mapping from states and actions to expected rewards. How Q-learning Works: 1. Initialization: The agent starts with an arbitrary Q-function. 2. Exploration: The agent selects an action and observes the resulting state and reward. 3. Update: The agent updates its Q-function based on the observed reward and the expected reward for the next state. 4. Exploitation: The agent chooses the action with the highest Q-value for the current state. Advantages: 1. Simple to implement: Q-learning is a straightforward algorithm to understand and code. 2. Effective in complex environments: Q-learning can handle complex, dynamic environments with many states and actions. Disadvantages: 1. Slow convergence: Q-learning can require many iterations to converge to an optimal policy. 2. Sensitive to hyperparameters: The performance of Q-learning is highly dependent on the choice of hyperparameters. Q-learning is a powerful algorithm for reinforcement learning, but it can be challenging to tune and may not always converge to an optimal solution. Thank you...🙂 $BTC $ETH $SOL $PI $AI $XAI $XRP $BGB $BNB $DOGE $DOGS $SHIB $BONK $FLOKI $U2U $WUF $WHY $SUNDOG $COQ $PEPE
SUNDOG-0.75%
BTC+1.72%
Crypto_inside
Crypto_inside
2h
What is Machine learning..🤔🤔??
Machine learning is a subset of artificial intelligence (AI) that involves training algorithms to learn from data and make predictions, decisions, or recommendations without being explicitly programmed. Key Characteristics: 1. Learning from data: Machine learning algorithms learn patterns and relationships in data. 2. Improving over time: Machine learning models improve their performance as they receive more data. 3. Making predictions or decisions: Machine learning models make predictions, decisions, or recommendations based on the learned patterns. Types of Machine Learning: 1. Supervised Learning: The algorithm learns from labeled data to make predictions. 2. Unsupervised Learning: The algorithm learns from unlabeled data to identify patterns. 3. Reinforcement Learning: The algorithm learns through trial and error to achieve a goal. 4. Semi-supervised Learning: The algorithm learns from a combination of labeled and unlabeled data. 5. Deep Learning: A subset of machine learning that uses neural networks with multiple layers. Machine Learning Applications: 1. Image Recognition: Image classification, object detection, and facial recognition. 2. Natural Language Processing (NLP): Text classification, sentiment analysis, and language translation. 3. Speech Recognition: Speech-to-text and voice recognition. 4. Predictive Analytics: Forecasting, regression, and decision-making. 5. Recommendation Systems: Personalized product recommendations. Machine Learning Algorithms: 1. Linear Regression: Linear models for regression tasks. 2. Decision Trees: Tree-based models for classification and regression. 3. Random Forest: Ensemble learning for classification and regression. 4. Support Vector Machines (SVMs): Linear and non-linear models for classification and regression. 5. Neural Networks: Deep learning models for complex tasks. Machine Learning Tools and Frameworks: 1. TensorFlow: Open-source deep learning framework. 2. PyTorch: Open-source deep learning framework. 3. Scikit-learn: Open-source machine learning library. 4. Keras: High-level neural networks API. Machine learning has numerous applications across industries, including healthcare, finance, marketing, and more. Its ability to learn from data and improve over time makes it a powerful tool for solving complex problems. Thank you...🙂 $BTC $ETH $SOL $PI $AI $XAI $BGB $BNB $DOGE $SHIB $FLOKI $BONK $U2U $WUF $WHY $SUNDOG $PARTI $XRP
SUNDOG-0.75%
BTC+1.72%
Crypto_inside
Crypto_inside
15h
Price action ❌ Technical analysis. 🧐😵‍💫
Price action and technical analysis are two related but distinct concepts in trading and investing. Price Action: 1. Focuses on raw price data: Price action involves analyzing the price movement of a security over time. 2. No indicators or overlays: Price action traders rely solely on the price chart, without using technical indicators or overlays. 3. Emphasis on market structure: Price action traders study the structure of the market, including trends, reversals, and breakouts. Technical Analysis: 1. Uses indicators and overlays: Technical analysis involves using various indicators and overlays, such as moving averages, RSI, and Bollinger Bands, to analyze price data. 2. *Focuses on patterns and trends*: Technical analysis identifies patterns and trends in price data, using indicators and overlays to confirm or contradict the analysis. 3. *Includes various methods*: Technical analysis encompasses various methods, including chart patterns, trend analysis, and momentum analysis. Key Differences: 1. Use of indicators: Price action traders do not use indicators, while technical analysts rely heavily on them. 2. Focus: Price action focuses on raw price data and market structure, while technical analysis focuses on patterns, trends, and indicators. 3. Approach: Price action trading is often more discretionary and subjective, while technical analysis can be more systematic and rule-based. Similarities: 1. Both analyze price data: Both price action and technical analysis involve analyzing price data to make trading decisions. 2. Both aim to identify trends and patterns: Both approaches aim to identify trends, patterns, and other market structures to inform trading decisions. 3. Both require skill and experience: Both price action and technical analysis require skill, experience, and continuous learning to master. In summary, while price action and technical analysis share some similarities, they differ in their approach, focus, and use of indicators. Price action traders rely solely on raw price data and market structure, while technical analysts use indicators and overlays to identify patterns and trends. Thank you...🙂 $BTC $ETH $SOL $PI $XRP $ADA $AI $DOGE $SHIB $FLOKI $BONK $BGB $BNB $U2U $PARTI $WUF $WHY $SUNDOG $DOGS $GEEK
SUNDOG-0.75%
BTC+1.72%

Ativos relacionados

Criptomoedas populares
Uma seleção das 8 principais criptomoedas por valor de mercado.
Adicionado recentemente.
As criptomoedas adicionadas mais recentemente.
Capitalização de mercado comparável
Entre todos os ativos da Bitget, esses 8 são os mais próximos do Bonk on Base em valor de mercado.