Bitget: Peringkat 4 teratas dalam volume perdagangan harian global!
Pangsa pasar BTC61.45%
Listing terbaru di Bitget : Pi Network
BTC/USDT$84013.89 (+2.28%)Indeks Fear and Greed34(Fear)
Indeks altcoin season:0(Bitcoin season)
Koin terlisting di Pra PasarPAWS,WCTTotal arus bersih ETF Bitcoin spot -$60.6M (1H); +$218.9M (7H).Paket hadiah sambutan untuk pengguna baru senilai 6200 USDT.Klaim sekarang
Trading kapan saja, di mana saja dengan aplikasi Bitget. Unduh sekarang
Bitget: Peringkat 4 teratas dalam volume perdagangan harian global!
Pangsa pasar BTC61.45%
Listing terbaru di Bitget : Pi Network
BTC/USDT$84013.89 (+2.28%)Indeks Fear and Greed34(Fear)
Indeks altcoin season:0(Bitcoin season)
Koin terlisting di Pra PasarPAWS,WCTTotal arus bersih ETF Bitcoin spot -$60.6M (1H); +$218.9M (7H).Paket hadiah sambutan untuk pengguna baru senilai 6200 USDT.Klaim sekarang
Trading kapan saja, di mana saja dengan aplikasi Bitget. Unduh sekarang
Bitget: Peringkat 4 teratas dalam volume perdagangan harian global!
Pangsa pasar BTC61.45%
Listing terbaru di Bitget : Pi Network
BTC/USDT$84013.89 (+2.28%)Indeks Fear and Greed34(Fear)
Indeks altcoin season:0(Bitcoin season)
Koin terlisting di Pra PasarPAWS,WCTTotal arus bersih ETF Bitcoin spot -$60.6M (1H); +$218.9M (7H).Paket hadiah sambutan untuk pengguna baru senilai 6200 USDT.Klaim sekarang
Trading kapan saja, di mana saja dengan aplikasi Bitget. Unduh sekarang
Terkait koin
Kalkulator harga
Riwayat harga
Prediksi harga
Analisis teknikal
Panduan pembelian koin
Kategori Kripto
Kalkulator profit

Harga SUPER BONKBONK
Tidak dilisting
Mata uang kuotasi:
IDR
Data bersumber dari penyedia pihak ketiga. Halaman ini dan informasi yang diberikan tidak mendukung mata uang kripto tertentu. Ingin trading koin yang listing? Klik di sini
Rp0.{8}1092-6.27%1D
Grafik harga
Terakhir diperbarui pada 2025-04-01 11:49:03(UTC+0)
Kapitalisasi pasar:--
Kapitalisasi pasar yang sepenuhnya terdilusi:--
Volume (24j):--
Volume 24j / kap. pasar:0.00%
Tertinggi 24j:Rp0.{8}1110
Terendah 24j:Rp0.{8}1041
Tertinggi sepanjang masa:Rp0.{8}5404
Terendah sepanjang masa:Rp0.{9}3467
Suplai beredar:-- BONK
Total suplai:
99,980,154,475,350,100BONK
Tingkat peredaran:0.00%
Supply maks.:
--BONK
Harga dalam BTC:0.{17}1000 BTC
Harga dalam ETH:0.{16}3500 ETH
Harga pada kapitalisasi pasar BTC:
--
Harga pada kapitalisasi pasar ETH:
--
Kontrak:
0xa211...DA884Be(BNB Smart Chain (BEP20))
Selengkapnya
Bagaimana perasaan kamu tentang SUPER BONK hari ini?
Catatan: Informasi ini hanya untuk referensi.
Harga SUPER BONK hari ini
Harga aktual SUPER BONK adalah Rp0.{8}1092 per (BONK / IDR) hari ini dengan kapitalisasi pasar saat ini sebesar Rp0.00 IDR. Volume perdagangan 24 jam adalah Rp0.00 IDR. Harga BONK hingga IDR diperbarui secara real time. SUPER BONK adalah -6.27% dalam 24 jam terakhir. Memiliki suplai yang beredar sebesar 0 .
Berapa harga tertinggi BONK?
BONK memiliki nilai tertinggi sepanjang masa (ATH) sebesar Rp0.{8}5404, tercatat pada 2024-03-24.
Berapa harga terendah BONK?
BONK memiliki nilai terendah sepanjang masa (ATL) sebesar Rp0.{9}3467, tercatat pada 2024-04-26.
Prediksi harga SUPER BONK
Berapa harga BONK di 2026?
Berdasarkan model prediksi kinerja harga historis BONK, harga BONK diproyeksikan akan mencapai Rp0.{8}1215 di 2026.
Berapa harga BONK di 2031?
Di tahun 2031, harga BONK diperkirakan akan mengalami perubahan sebesar +25.00%. Di akhir tahun 2031, harga BONK diproyeksikan mencapai Rp0.{8}1872, dengan ROI kumulatif sebesar +74.00%.
Riwayat harga SUPER BONK (IDR)
Harga SUPER BONK -75.86% selama setahun terakhir. Harga tertinggi dalam IDR pada tahun lalu adalah Rp0.{8}4260 dan harga terendah dalam IDR pada tahun lalu adalah Rp0.{9}3467.
WaktuPerubahan harga (%)
Harga terendah
Harga tertinggi 
24h-6.27%Rp0.{8}1041Rp0.{8}1110
7d+13.58%Rp0.{8}1041Rp0.{8}1174
30d+20.19%Rp0.{9}7636Rp0.{8}1174
90d-26.27%Rp0.{9}7636Rp0.{8}1397
1y-75.86%Rp0.{9}3467Rp0.{8}4260
Sepanjang masa-45.26%Rp0.{9}3467(2024-04-26, 340 hari yang lalu )Rp0.{8}5404(2024-03-24, 1 tahun yang lalu )
Informasi pasar SUPER BONK
Riwayat kapitalisasi pasar SUPER BONK
Kapitalisasi pasar
--
Kapitalisasi pasar yang sepenuhnya terdilusi
Rp109,130,060.73
Peringkat pasar
Kepemilikan SUPER BONK berdasarkan konsentrasi
Whale
Investor
Ritel
Alamat SUPER BONK berdasarkan waktu kepemilikan
Holder
Cruiser
Trader
Grafik harga langsung coinInfo.name (12)
Peringkat SUPER BONK
Penilaian rata-rata dari komunitas
4.6
Konten ini hanya untuk tujuan informasi.
BONK ke mata uang lokal
1 BONK ke MXN$01 BONK ke GTQQ01 BONK ke CLP$01 BONK ke HNLL01 BONK ke UGXSh01 BONK ke ZARR01 BONK ke TNDد.ت01 BONK ke IQDع.د01 BONK ke TWDNT$01 BONK ke RSDдин.01 BONK ke DOP$01 BONK ke MYRRM01 BONK ke GEL₾01 BONK ke UYU$01 BONK ke MADد.م.01 BONK ke AZN₼01 BONK ke OMRر.ع.01 BONK ke KESSh01 BONK ke SEKkr01 BONK ke UAH₴0
- 1
- 2
- 3
- 4
- 5
Terakhir diperbarui pada 2025-04-01 11:49:03(UTC+0)
Berita SUPER BONK

Memecoin BONK berbasis Solana telah mengakuisisi Exchange Art
Coinjournal•2025-03-28 05:44
BONK mengumumkan akuisisi platform pasar seni Exchange
Bitget•2025-03-27 14:44
Token BONK Melonjak 14%, Kembali ke Kapitalisasi Pasar $1 Miliar
Yellow•2025-03-24 20:00
DuragDoge Mencuri Perhatian Saat Para Pemegang Bonk “Jump to the Ship”
Coinfolks•2025-03-18 16:33
Hype Bonk Meredup Saat FXGuys Muncul dengan Lebih dari $4 Juta Terhimpun dalam Presale
Coinfolks•2025-02-25 08:34
Beli lebih banyak
FAQ
Berapa harga SUPER BONK saat ini?
Harga live SUPER BONK adalah Rp0 per (BONK/IDR) dengan kapitalisasi pasar saat ini sebesar Rp0 IDR. Nilai SUPER BONK sering mengalami fluktuasi karena aktivitas 24/7 yang terus-menerus di pasar kripto. Harga SUPER BONK saat ini secara real-time dan data historisnya tersedia di Bitget.
Berapa volume perdagangan 24 jam dari SUPER BONK?
Selama 24 jam terakhir, volume perdagangan SUPER BONK adalah Rp0.00.
Berapa harga tertinggi sepanjang masa (ATH) dari SUPER BONK?
Harga tertinggi sepanjang masa dari SUPER BONK adalah Rp0.{8}5404. Harga tertinggi sepanjang masa ini adalah harga tertinggi untuk SUPER BONK sejak diluncurkan.
Bisakah saya membeli SUPER BONK di Bitget?
Ya, SUPER BONK saat ini tersedia di exchange tersentralisasi Bitget. Untuk petunjuk yang lebih detail, bacalah panduan Bagaimana cara membeli kami yang sangat membantu.
Apakah saya bisa mendapatkan penghasilan tetap dari berinvestasi di SUPER BONK?
Tentu saja, Bitget menyediakan platform perdagangan strategis, dengan bot trading cerdas untuk mengotomatiskan perdagangan Anda dan memperoleh profit.
Di mana saya bisa membeli SUPER BONK dengan biaya terendah?
Dengan bangga kami umumkan bahwa platform perdagangan strategis kini telah tersedia di exchange Bitget. Bitget menawarkan biaya dan kedalaman perdagangan terdepan di industri untuk memastikan investasi yang menguntungkan bagi para trader.
Di mana saya bisa membeli kripto?
Bagian video — verifikasi cepat, trading cepat

Cara menyelesaikan verifikasi identitas di Bitget dan melindungi diri kamu dari penipuan
1. Masuk ke akun Bitget kamu.
2. Jika kamu baru mengenal Bitget, tonton tutorial kami tentang cara membuat akun.
3. Arahkan kursor ke ikon profil kamu, klik "Belum diverifikasi", dan tekan "Verifikasi".
4. Pilih negara atau wilayah penerbit dan jenis ID kamu, lalu ikuti petunjuknya.
5. Pilih "Verifikasi Seluler" atau "PC" berdasarkan preferensimu.
6. Masukkan detail kamu, kirimkan salinan kartu identitasmu, dan ambil foto selfie.
7. Kirimkan pengajuanmu, dan voila, kamu telah menyelesaikan verifikasi identitas!
Investasi mata uang kripto, termasuk membeli SUPER BONK secara online melalui Bitget, tunduk pada risiko pasar. Bitget menyediakan cara yang mudah dan nyaman bagi kamu untuk membeli SUPER BONK, dan kami berusaha sebaik mungkin untuk menginformasikan kepada pengguna kami secara lengkap tentang setiap mata uang kripto yang kami tawarkan di exchange. Namun, kami tidak bertanggung jawab atas hasil yang mungkin timbul dari pembelian SUPER BONK kamu. Halaman ini dan informasi apa pun yang disertakan bukan merupakan dukungan terhadap mata uang kripto tertentu.
Insight Bitget

Crypto_inside
5j
What is IQ..🤔🤔??
Intelligence Quotient (IQ) is a score derived from standardized tests designed to measure human intelligence. IQ tests assess various cognitive abilities, such as:
Components of IQ Tests:
1. Verbal Comprehension: Measures ability to understand and use language.
2. Perceptual Reasoning: Assesses ability to reason, form concepts, and solve problems.
3. Working Memory: Evaluates ability to hold and manipulate information in short-term memory.
4. Processing Speed: Measures ability to quickly and accurately process visual information.
IQ Score Interpretation:
1. Average IQ: 85-115 (68% of population)
2. Above Average IQ: 116-130 (16% of population)
3. Gifted IQ: 131-145 (2% of population)
4. Highly Gifted IQ: 146-160 (0.1% of population)
5. Profoundly Gifted IQ: 161-175 (0.01% of population)
Criticisms and Limitations of IQ Tests:
1. Cultural Bias: IQ tests may favor certain cultural or socioeconomic groups.
2. Narrow Scope: IQ tests only measure specific aspects of intelligence.
3. Context-Dependent: IQ scores can be influenced by environmental factors.
4. Oversimplification: IQ scores can oversimplify complex cognitive abilities.
Types of Intelligence:
1. Fluid Intelligence: Ability to reason, think abstractly, and solve problems.
2. Crystallized Intelligence: Ability to use learned knowledge and experience.
3. Emotional Intelligence: Ability to recognize and understand emotions.
Notable Theories and Models:
1. Gardner's Multiple Intelligences: Proposes multiple types of intelligence, such as linguistic, spatial, and bodily-kinesthetic.
2. Sternberg's Triarchic Theory: Suggests three components of intelligence: analytical, creative, and practical.
IQ tests provide a limited snapshot of cognitive abilities and should not be considered the sole measure of intelligence or potential.
Thank you...🙂
$BTC $ETH $SOL $PI $AI $XRP $BGB $BNB $ONDO $DOGE $SHIB $BONK $FLOKI $U2U $WUF $PARTI $WHY $SUNDOG
SUNDOG-0.93%
BTC+1.79%

Crypto_inside
5j
Machine learning ❌ Traditional learning. 🧐😵💫
Machine learning and traditional learning are two distinct approaches to learning and problem-solving.
Traditional Learning:
1. Rule-based: Traditional learning involves explicit programming and rule-based systems.
2. Human expertise: Traditional learning relies on human expertise and manual feature engineering.
3. Fixed models: Traditional learning uses fixed models that are not updated automatically.
Machine Learning:
1. Data-driven: Machine learning involves learning from data and improving over time.
2. Algorithmic: Machine learning relies on algorithms that can learn from data and make predictions.
3. Adaptive models: Machine learning uses adaptive models that can update automatically based on new data.
Key Differences:
1. Learning style: Traditional learning is rule-based, while machine learning is data-driven.
2. Scalability: Machine learning can handle large datasets and complex problems, while traditional learning is limited by human expertise.
3. Accuracy: Machine learning can achieve higher accuracy than traditional learning, especially in complex domains.
Advantages of Machine Learning:
1. Improved accuracy: Machine learning can achieve higher accuracy than traditional learning.
2. Increased efficiency: Machine learning can automate many tasks, freeing up human experts for more complex tasks.
3. Scalability: Machine learning can handle large datasets and complex problems.
Disadvantages of Machine Learning:
1. Data quality: Machine learning requires high-quality data to learn effectively.
2. Interpretability: Machine learning models can be difficult to interpret and understand.
3. Bias: Machine learning models can perpetuate biases present in the training data.
When to Use Machine Learning:
1. Complex problems: Machine learning is well-suited for complex problems that require pattern recognition and prediction.
2. Large datasets: Machine learning can handle large datasets and identify trends and patterns.
3. Automating tasks: Machine learning can automate many tasks, freeing up human experts for more complex tasks.
When to Use Traditional Learning:
1. Simple problems: Traditional learning is well-suited for simple problems that require explicit programming and rule-based systems.
2. Small datasets: Traditional learning is suitable for small datasets where machine learning may not be effective.
3. Human expertise: Traditional learning relies on human expertise and manual feature engineering, making it suitable for domains where human expertise is essential.
Thank you...🙂
$BTC $ETH $SOL $PI $AI $XAI $BGB $BNB $DOGE $DOGS $SHIB $BONK $MEME $XRP $ADA $U2U $WUF $PARTI $WHY
BTC+1.79%
BGB+2.19%

Crypto_inside
5j
What is Q-learning...🤔🤔??
Q-learning is a type of reinforcement learning algorithm used in machine learning and artificial intelligence. It's a model-free, off-policy learning algorithm that helps agents learn to make decisions in complex, uncertain environments.
Key Components:
1. Agent: The decision-maker that interacts with the environment.
2. Environment: The external system with which the agent interacts.
3. Actions: The decisions made by the agent.
4. Rewards: The feedback received by the agent for its actions.
5. Q-function: A mapping from states and actions to expected rewards.
How Q-learning Works:
1. Initialization: The agent starts with an arbitrary Q-function.
2. Exploration: The agent selects an action and observes the resulting state and reward.
3. Update: The agent updates its Q-function based on the observed reward and the expected reward for the next state.
4. Exploitation: The agent chooses the action with the highest Q-value for the current state.
Advantages:
1. Simple to implement: Q-learning is a straightforward algorithm to understand and code.
2. Effective in complex environments: Q-learning can handle complex, dynamic environments with many states and actions.
Disadvantages:
1. Slow convergence: Q-learning can require many iterations to converge to an optimal policy.
2. Sensitive to hyperparameters: The performance of Q-learning is highly dependent on the choice of hyperparameters.
Q-learning is a powerful algorithm for reinforcement learning, but it can be challenging to tune and may not always converge to an optimal solution.
Thank you...🙂
$BTC $ETH $SOL $PI $AI $XAI $XRP $BGB $BNB $DOGE $DOGS $SHIB $BONK $FLOKI $U2U $WUF $WHY $SUNDOG $COQ $PEPE
SUNDOG-0.93%
BTC+1.79%

Crypto_inside
5j
What is Machine learning..🤔🤔??
Machine learning is a subset of artificial intelligence (AI) that involves training algorithms to learn from data and make predictions, decisions, or recommendations without being explicitly programmed.
Key Characteristics:
1. Learning from data: Machine learning algorithms learn patterns and relationships in data.
2. Improving over time: Machine learning models improve their performance as they receive more data.
3. Making predictions or decisions: Machine learning models make predictions, decisions, or recommendations based on the learned patterns.
Types of Machine Learning:
1. Supervised Learning: The algorithm learns from labeled data to make predictions.
2. Unsupervised Learning: The algorithm learns from unlabeled data to identify patterns.
3. Reinforcement Learning: The algorithm learns through trial and error to achieve a goal.
4. Semi-supervised Learning: The algorithm learns from a combination of labeled and unlabeled data.
5. Deep Learning: A subset of machine learning that uses neural networks with multiple layers.
Machine Learning Applications:
1. Image Recognition: Image classification, object detection, and facial recognition.
2. Natural Language Processing (NLP): Text classification, sentiment analysis, and language translation.
3. Speech Recognition: Speech-to-text and voice recognition.
4. Predictive Analytics: Forecasting, regression, and decision-making.
5. Recommendation Systems: Personalized product recommendations.
Machine Learning Algorithms:
1. Linear Regression: Linear models for regression tasks.
2. Decision Trees: Tree-based models for classification and regression.
3. Random Forest: Ensemble learning for classification and regression.
4. Support Vector Machines (SVMs): Linear and non-linear models for classification and regression.
5. Neural Networks: Deep learning models for complex tasks.
Machine Learning Tools and Frameworks:
1. TensorFlow: Open-source deep learning framework.
2. PyTorch: Open-source deep learning framework.
3. Scikit-learn: Open-source machine learning library.
4. Keras: High-level neural networks API.
Machine learning has numerous applications across industries, including healthcare, finance, marketing, and more. Its ability to learn from data and improve over time makes it a powerful tool for solving complex problems.
Thank you...🙂
$BTC $ETH $SOL $PI $AI $XAI $BGB $BNB $DOGE $SHIB $FLOKI $BONK $U2U $WUF $WHY $SUNDOG $PARTI $XRP
SUNDOG-0.93%
BTC+1.79%

Crypto_inside
18j
Price action ❌ Technical analysis. 🧐😵💫
Price action and technical analysis are two related but distinct concepts in trading and investing.
Price Action:
1. Focuses on raw price data: Price action involves analyzing the price movement of a security over time.
2. No indicators or overlays: Price action traders rely solely on the price chart, without using technical indicators or overlays.
3. Emphasis on market structure: Price action traders study the structure of the market, including trends, reversals, and breakouts.
Technical Analysis:
1. Uses indicators and overlays: Technical analysis involves using various indicators and overlays, such as moving averages, RSI, and Bollinger Bands, to analyze price data.
2. *Focuses on patterns and trends*: Technical analysis identifies patterns and trends in price data, using indicators and overlays to confirm or contradict the analysis.
3. *Includes various methods*: Technical analysis encompasses various methods, including chart patterns, trend analysis, and momentum analysis.
Key Differences:
1. Use of indicators: Price action traders do not use indicators, while technical analysts rely heavily on them.
2. Focus: Price action focuses on raw price data and market structure, while technical analysis focuses on patterns, trends, and indicators.
3. Approach: Price action trading is often more discretionary and subjective, while technical analysis can be more systematic and rule-based.
Similarities:
1. Both analyze price data: Both price action and technical analysis involve analyzing price data to make trading decisions.
2. Both aim to identify trends and patterns: Both approaches aim to identify trends, patterns, and other market structures to inform trading decisions.
3. Both require skill and experience: Both price action and technical analysis require skill, experience, and continuous learning to master.
In summary, while price action and technical analysis share some similarities, they differ in their approach, focus, and use of indicators. Price action traders rely solely on raw price data and market structure, while technical analysts use indicators and overlays to identify patterns and trends.
Thank you...🙂
$BTC $ETH $SOL $PI $XRP $ADA $AI $DOGE $SHIB $FLOKI $BONK $BGB $BNB $U2U $PARTI $WUF $WHY $SUNDOG $DOGS $GEEK
SUNDOG-0.93%
BTC+1.79%
Aset terkait
Mata uang kripto populer
Pilihan 8 mata uang kripto teratas berdasarkan kapitalisasi pasar.
Baru ditambahkan
Mata uang kripto yang baru saja ditambahkan.
Kap. pasar yang sebanding
Di antara semua aset Bitget, 8 aset ini adalah yang paling mendekati kapitalisasi pasar SUPER BONK.
