Bitget App
Aqlliroq savdo qiling
Kripto sotib olishBozorlarSavdoFyuchersBotsEarnNusxa savdosi
SideShift Token narxi

SideShift Token narxXAI

focusIcon
subscribe
Ro'yxatga kiritilmagan
Kotirovka valyutasi:
UZS
Ma'lumotlar uchinchi tomon provayderlaridan olinadi. Ushbu sahifa va taqdim etilgan ma'lumotlar hech qanday aniq kriptovalyutani tasdiqlamaydi. Ro'yxatga olingan tangalar bilan savdo qilishni xohlaysizmi?  Bu yerni bosing

Bugun SideShift Token haqida qanday fikrdasiz?

IconGoodYaxshiIconBadYomon
Izoh: Ushbu ma'lumot faqat ma'lumot uchun.

SideShift Tokenning bugungi narxi

SideShift Token ning joriy narxi bugungi kunda (XAI / UZS) uchun so'm1,813.07, joriy kapitallashuvi so'm261.62B UZS. 24 soatlik savdo hajmi so'm491.83M UZS. XAI dan UZS gacha, narx real vaqtda yangilanadi. SideShift Token oxirgi 24 soat ichida -0.40%. Muomaladagi hajm 144,299,740 .

XAIning eng yuqori narxi qancha?

XAI barcha vaqtlardagi eng yuqori ko'rsatkichga ega (ATH) so'm4,953.25 bo'lib, 2024-01-24 tomonidan qayd etilgan.

XAI ning eng past narxi qancha?

XAI barcha vaqtlardagi eng past ko'rsatkichga ega (ATL) so'm877.29, 2023-11-09 da qayd etilgan.
SideShift Token foydasini hisoblang

SideShift Token narx bashorati

2026 da XAI narxi qanday bo'ladi?

XAI tarixiy narx bajarilishini bashorat qilish modeli asosida XAI narxi 2026 da so'm2,081.24 ga yetishi prognoz qilinmoqda.

2031 da XAI narxi qanday bo'ladi?

2031 da XAI narxi +6.00% ga o'zgarishi kutilmoqda. 2031 oxiriga kelib, XAI narxi so'm2,618.31 ga yetishi prognoz qilinmoqda, jami ROI +44.58%.

SideShift Token narx tarixi (UZS)

SideShift Token narxi o'tgan yil davomida -22.64% ni tashkil qiladi. O'tgan yildagi ning UZS dagi eng yuqori narxi so'm2,730.53 va o'tgan yildagi ning UZS dagi eng past narxi so'm1,060.22 edi.
VaqtNarx o'zgarishi (%)Narx o'zgarishi (%)Eng past narxTegishli vaqt oralig'ida {0}ning eng past narxi.Eng yuqori narx Eng yuqori narx
24h-0.40%so'm1,804.46so'm1,832.19
7d-0.57%so'm1,800.42so'm1,851.72
30d-16.48%so'm1,789.26so'm2,186.37
90d-1.60%so'm1,789.26so'm2,730.53
1y-22.64%so'm1,060.22so'm2,730.53
Hamma vaqt-49.57%so'm877.29(2023-11-09, 1 yil avval )so'm4,953.25(2024-01-24, 1 yil avval )

SideShift Token bozor ma’lumotlari

SideShift Tokenning bozor qiymati tarixi

Bozor kapitali
so'm261,624,896,495.11
To’liq suyultirilgan bozor kapitali
so'm380,743,783,872.45
Bozor reytinglari
Kripto sotib olish

SideShift Token kontsentratsiya bo'yicha xoldinglar

Kitlar
Investorlar
Chakana savdo

Saqlash vaqti bo'yicha SideShift Token manzil

Xolderlar
Kruizerlar
Treyderlar
Jonli coinInfo.name (12) narx grafigi
loading

SideShift Token reyting

Jamiyatning o'rtacha baholari
4.4
100 reyting
Ushbu kontent faqat ma'lumot olish uchun mo'ljallangan.

SideShift Token Ijtimoiy ma'lumotlar

So'nggi 24 soat ichida SideShift Token uchun ijtimoiy tarmoq hissiyot ko'rsatkichi 3 bo'lib, SideShift Token narxi tendentsiyasiga nisbatan ijtimoiy tarmoq hissiyot ko'rsatkichi Bullish bo'ldi. Umumiy SideShift Token ijtimoiy tarmoq ko'rsatkichi 0 bo'lib, u barcha kripto valyutalar orasida 686 darajasiga ega.

LunarCrush ma'lumotlariga ko'ra, so'nggi 24 soat ichida kripto valyutalar ijtimoiy tarmoqlarda jami 1,058,120 marta eslatib o'tildi, SideShift Token esa 0.01% koeffitsiyenti bilan barcha kripto valyutalar orasida 537 o'rinni egalladi.

So'nggi 24 soat ichida 489 jami SideShift Token haqida bahslashayotgan 489 noyob foydalanuvchilar bo'lib, jami SideShift Token eslatilgan. Biroq, o'tgan 24 soatlik davr bilan taqqoslaganda, noyob foydalanuvchilar soni 9% ga va umumiy eslatmalar soni pasayish ga 29% oshdi.

Twitterda so'nggi 24 soat ichida 2da SideShift Tokenni eslatib o'tadigan umumiy tvitlar mavjud edi. Ulardan SideShift Tokenda ko'tarilish, SideShift Tokenda pasayish va SideShift Tokenda neytral.

Redditda so'nggi 24 soat ichida SideShift Token eslatib o'tilgan 1 ta post bor edi. Oldingi 24 soatlik davr bilan taqqoslaganda, pasayish eslatmalari soni 0% bilan.

Barcha ijtimoiy ko'rinish

O'rtacha hissiyot(24h)
3
Ijtimoiy tarmoqlar reytingi(24h)
0(#686)
Ijtimoiy hissa qo'shuvchilar(24h)
489
+9%
Ijtimoiy tarmoqlarda eslatmalar(24h)
48(#537)
-29%
Ijtimoiy tarmoqlarning ustunligi(24h)
0.01%
X
X postlar(24h)
2
0%
X hissi(24h)
Bullish
100%
Neytral
0%
Bearish
0%
Reddit
Reddit ko'rsatkichi(24h)
1
Reddit postlari(24h)
1
0%
Reddit sharhlari(24h)
0
0%

SideShift Token yangiliklar

Yangi spot marja savdo juftligi – XAI/USDT, MBOX/USDT, ALPACA/USDT!
Yangi spot marja savdo juftligi – XAI/USDT, MBOX/USDT, ALPACA/USDT!

Bitget kompaniyasi XAI/USDT, MBOX/USDT, ALPACA/USDT uchun spot marja savdosini boshlaganini e’lon qilishdan xursandmiz. Yangi listing imtiyozi: Yangi tangalar ro'yxatini nishonlash uchun Bitget tasodifiy ravishda foydalanuvchilarning hisoblariga spot kredit yelkasi chegirmali kuponlar yoki savdo bo

Bitget Announcement2024-09-09 07:04
Ko'proq SideShift Token yangilanishlari

SAVOL-JAVOBLAR

SideShift Token ning hozirgi narxi qancha?

SideShift Tokenning jonli narxi (XAI/UZS) uchun so'm1,813.07, joriy bozor qiymati so'm261,624,896,495.11 UZS. Kripto bozorida 24/7 doimiy faoliyat tufayli SideShift Token qiymati tez-tez o'zgarib turadi. SideShift Tokenning real vaqtdagi joriy narxi va uning tarixiy maʼlumotlari Bitget’da mavjud.

SideShift Token ning 24 soatlik savdo hajmi qancha?

Oxirgi 24 soat ichida SideShift Token savdo hajmi so'm491.83M.

SideShift Tokenning eng yuqori koʻrsatkichi qancha?

SideShift Tokenning eng yuqori ko‘rsatkichi so'm4,953.25. Bu SideShift Token ishga tushirilgandan beri eng yuqori narx hisoblanadi.

Bitget orqali SideShift Token sotib olsam bo'ladimi?

Ha, SideShift Token hozirda Bitget markazlashtirilgan birjasida mavjud. Batafsil koʻrsatmalar uchun foydali qanday sotib olinadi qoʻllanmamizni koʻrib chiqing.

SideShift Token ga sarmoya kiritish orqali barqaror daromad olsam bo'ladimi?

Albatta, Bitget savdolaringizni avtomatlashtirish va daromad olish uchun aqlli savdo botlari bilan strategik savdo platformasi ni taqdim etadi.

Eng past toʻlov bilan SideShift Token ni qayerdan sotib olsam boʻladi?

strategik savdo platformasi endi Bitget birjasida mavjud ekanligini ma’lum qilishdan mamnunmiz. Bitget treyderlar uchun foydali investitsiyalarni ta'minlash uchun sanoatning yetakchi savdo to'lovlari va tubanligini taklif qiladi.

Qayerdan kripto sotib olsam bo'ladi?

Bitget ilovasida kripto sotib oling
Kredit karta yoki bank o'tkazmasi orqali kripto sotib olish uchun bir necha daqiqada ro'yxatdan o'ting.
Download Bitget APP on Google PlayDownload Bitget APP on AppStore
Bitgetda savdo qilish
Bitgetga kriptovalyutalaringizni depozit qiling va yuqori likvidlik va past savdo to'lovlaridan bahramand bo'ling.

Video bo'limi — tezkor tekshiruv, tezkor savdo

play cover
Bitgetda shaxsni tasdqilashni qanday yakunlash va o'zingizni firibgarlikdan himoya qilish kerak
1. Bitget hisobingizga kiring.
2. Agar siz Bitgetda yangi bo'lsangiz, hisob yaratish bo'yicha o'quv qo'llanmamizni tomosha qiling.
3. Profilingiz belgisiga kursorni olib keling, "Tasdiqlanmagan" tugmasini bosing va "Tasdiqlash" tugmasini bosing.
4. Chiqaruvchi mamlakat yoki mintaqa va ID turini tanlang va ko'rsatmalarga amal qiling.
5. O'zingizning xohishingizga ko'ra "Mobil tekshiruv" yoki "Kompyuter" ni tanlang.
6. Ma'lumotlaringizni kiriting, shaxsingizni tasdiqlovchi hujjat nusxasini yuboring va selfi oling.
7. Arizangizni yuboring va bo'ldi, siz shaxsingizni tasdiqlashni tugatdingiz!
Kriptovalyutalarga sarmoya kiritish, jumladan Bitgetda onlayn SideShift Token xarid qilish xavflarni o‘z ichiga oladi. Bitget SideShift Token sotib olishning oson va qulay usullarini taklif etadi va birjada ko'rsatilgan kriptovalyuta haqida to'liq ma'lumot berishga harakat qiladi. Biroq, biz SideShift Token xaridingizdan kelib chiqadigan natijalar uchun javobgar emasmiz. Taqdim etilgan barcha ma'lumotlar xarid uchun tavsiya etilmaydi.

Bitget Insaytlari

Cointribune EN
Cointribune EN
1K
Elon Musk Is Fighting For The Privacy Of Coinbase Users
Elon Musk, via his platform X, has filed a brief with the U.S. Supreme Court challenging the IRS’s practices regarding access to Coinbase user data. This initiative is part of a broader debate on privacy protection in the crypto space. X Corp, Elon Musk’s company that manages the X platform, filed an amicus curiae brief with the U.S. Supreme Court on Friday, contesting the IRS’s methods. The company specifically denounces the use of so-called “no-suspicion” subpoenas allowing the tax authorities to access, without a judicial warrant, the financial data of users on platforms like Coinbase. The case highlights how the tax authorities obtained, through simple administrative subpoena, three years of transaction statements concerning over 14,000 Coinbase customers, including James Harper, the main plaintiff. Alongside seven advocacy groups and researchers, X Corp denounces these “no-suspicion subpoenas” as a violation of the Fourth Amendment, which protects Americans against unreasonable searches. Following this request, the Supreme Court asked the federal government on Monday to formulate an official response, highlighting the importance of this case. The dispute dates back to 2020 when James Harper sued the IRS to contest the seizure of his personal information related to cryptos. In 2023, a federal court ruled in favor of the IRS, determining that the tax agency was acting within the scope of its legal prerogatives. The current appeal before the Supreme Court thus marks a new stage in this legal battle, with potentially significant implications for the protection of digital financial data. This initiative perfectly aligns with Elon Musk’s vision regarding digital governance. The billionaire, who recently sold his platform X to his own company xAI for 33 billion dollars, has always positioned himself as an advocate for privacy and freedom of speech. By taking a stand for the protection of cryptocurrency users’ data, Musk strengthens his credibility among the tech and crypto communities, particularly sensitive to privacy issues. The Supreme Court’s verdict could redefine the limits of state power in relation to digital privacy. This case resonates with the recent case of Tornado Cash , a crypto mixing protocol ultimately removed from the OFAC blacklist after a court ruled that the agency had overstepped its authority. This case resonates with the recent case of Tornado Cash , a crypto mixing protocol ultimately removed from the OFAC blacklist after a court ruled that the agency had overstepped its authority, illustrating the growing tensions between state regulation and digital freedoms.
XAI+0.19%
ELON+0.47%
Mahnoor-Baloch007
Mahnoor-Baloch007
2K
AI agents and AI are related but distinct concepts in the field of artificial intelligence. AI (Artificial Intelligence) 1. Definition: AI refers to the broad field of study focused on creating intelligent machines that can perform tasks that typically require human intelligence. 2. Characteristics: AI systems can process and analyze large amounts of data, learn from experiences, and make decisions based on that data. 3. Examples: AI-powered chatbots, image recognition systems, and natural language processing tools. AI Agents 1. Definition: AI agents are a specific type of AI system that can autonomously perform tasks on behalf of a user or another system. 2. Characteristics: AI agents have the ability to design their own workflow, utilize available tools, and interact with external environments to achieve complex goals. 3. Examples: AI-powered trading bots, autonomous vehicles, and smart home systems. Key Differences 1. Autonomy: AI agents have a higher level of autonomy compared to traditional AI systems, allowing them to make decisions and take actions independently. 2. Interactivity: AI agents can interact with their environment and other systems, whereas traditional AI systems may only process data internally. 3. Proactivity: AI agents can anticipate and prevent problems, whereas traditional AI systems may only react to problems after they occur. 4. Complexity: AI agents often require more complex decision-making and problem-solving capabilities compared to traditional AI systems. In summary, while AI refers to the broader field of artificial intelligence, AI agents are a specific type of AI system that can autonomously perform tasks, interact with their environment, and make decisions independently. Thank you...🙂 $BTC $ETH $SOL $PI $XRP $DOGE $SHIB $SUNDOG $MEME $AI $XAI $PEPECOIN $PIPPIN $ORAI $ETC $WHY $U2U
SUNDOG-13.76%
BTC-0.06%
Crypto_inside
Crypto_inside
2K
Machine learning ❌ Traditional learning. 🧐😵‍💫
Machine learning and traditional learning are two distinct approaches to learning and problem-solving. Traditional Learning: 1. Rule-based: Traditional learning involves explicit programming and rule-based systems. 2. Human expertise: Traditional learning relies on human expertise and manual feature engineering. 3. Fixed models: Traditional learning uses fixed models that are not updated automatically. Machine Learning: 1. Data-driven: Machine learning involves learning from data and improving over time. 2. Algorithmic: Machine learning relies on algorithms that can learn from data and make predictions. 3. Adaptive models: Machine learning uses adaptive models that can update automatically based on new data. Key Differences: 1. Learning style: Traditional learning is rule-based, while machine learning is data-driven. 2. Scalability: Machine learning can handle large datasets and complex problems, while traditional learning is limited by human expertise. 3. Accuracy: Machine learning can achieve higher accuracy than traditional learning, especially in complex domains. Advantages of Machine Learning: 1. Improved accuracy: Machine learning can achieve higher accuracy than traditional learning. 2. Increased efficiency: Machine learning can automate many tasks, freeing up human experts for more complex tasks. 3. Scalability: Machine learning can handle large datasets and complex problems. Disadvantages of Machine Learning: 1. Data quality: Machine learning requires high-quality data to learn effectively. 2. Interpretability: Machine learning models can be difficult to interpret and understand. 3. Bias: Machine learning models can perpetuate biases present in the training data. When to Use Machine Learning: 1. Complex problems: Machine learning is well-suited for complex problems that require pattern recognition and prediction. 2. Large datasets: Machine learning can handle large datasets and identify trends and patterns. 3. Automating tasks: Machine learning can automate many tasks, freeing up human experts for more complex tasks. When to Use Traditional Learning: 1. Simple problems: Traditional learning is well-suited for simple problems that require explicit programming and rule-based systems. 2. Small datasets: Traditional learning is suitable for small datasets where machine learning may not be effective. 3. Human expertise: Traditional learning relies on human expertise and manual feature engineering, making it suitable for domains where human expertise is essential. Thank you...🙂 $BTC $ETH $SOL $PI $AI $XAI $BGB $BNB $DOGE $DOGS $SHIB $BONK $MEME $XRP $ADA $U2U $WUF $PARTI $WHY
BTC-0.06%
BGB-0.79%
Crypto_inside
Crypto_inside
2K
What is Q-learning...🤔🤔??
Q-learning is a type of reinforcement learning algorithm used in machine learning and artificial intelligence. It's a model-free, off-policy learning algorithm that helps agents learn to make decisions in complex, uncertain environments. Key Components: 1. Agent: The decision-maker that interacts with the environment. 2. Environment: The external system with which the agent interacts. 3. Actions: The decisions made by the agent. 4. Rewards: The feedback received by the agent for its actions. 5. Q-function: A mapping from states and actions to expected rewards. How Q-learning Works: 1. Initialization: The agent starts with an arbitrary Q-function. 2. Exploration: The agent selects an action and observes the resulting state and reward. 3. Update: The agent updates its Q-function based on the observed reward and the expected reward for the next state. 4. Exploitation: The agent chooses the action with the highest Q-value for the current state. Advantages: 1. Simple to implement: Q-learning is a straightforward algorithm to understand and code. 2. Effective in complex environments: Q-learning can handle complex, dynamic environments with many states and actions. Disadvantages: 1. Slow convergence: Q-learning can require many iterations to converge to an optimal policy. 2. Sensitive to hyperparameters: The performance of Q-learning is highly dependent on the choice of hyperparameters. Q-learning is a powerful algorithm for reinforcement learning, but it can be challenging to tune and may not always converge to an optimal solution. Thank you...🙂 $BTC $ETH $SOL $PI $AI $XAI $XRP $BGB $BNB $DOGE $DOGS $SHIB $BONK $FLOKI $U2U $WUF $WHY $SUNDOG $COQ $PEPE
SUNDOG-13.76%
BTC-0.06%
Crypto_inside
Crypto_inside
2K
What is Machine learning..🤔🤔??
Machine learning is a subset of artificial intelligence (AI) that involves training algorithms to learn from data and make predictions, decisions, or recommendations without being explicitly programmed. Key Characteristics: 1. Learning from data: Machine learning algorithms learn patterns and relationships in data. 2. Improving over time: Machine learning models improve their performance as they receive more data. 3. Making predictions or decisions: Machine learning models make predictions, decisions, or recommendations based on the learned patterns. Types of Machine Learning: 1. Supervised Learning: The algorithm learns from labeled data to make predictions. 2. Unsupervised Learning: The algorithm learns from unlabeled data to identify patterns. 3. Reinforcement Learning: The algorithm learns through trial and error to achieve a goal. 4. Semi-supervised Learning: The algorithm learns from a combination of labeled and unlabeled data. 5. Deep Learning: A subset of machine learning that uses neural networks with multiple layers. Machine Learning Applications: 1. Image Recognition: Image classification, object detection, and facial recognition. 2. Natural Language Processing (NLP): Text classification, sentiment analysis, and language translation. 3. Speech Recognition: Speech-to-text and voice recognition. 4. Predictive Analytics: Forecasting, regression, and decision-making. 5. Recommendation Systems: Personalized product recommendations. Machine Learning Algorithms: 1. Linear Regression: Linear models for regression tasks. 2. Decision Trees: Tree-based models for classification and regression. 3. Random Forest: Ensemble learning for classification and regression. 4. Support Vector Machines (SVMs): Linear and non-linear models for classification and regression. 5. Neural Networks: Deep learning models for complex tasks. Machine Learning Tools and Frameworks: 1. TensorFlow: Open-source deep learning framework. 2. PyTorch: Open-source deep learning framework. 3. Scikit-learn: Open-source machine learning library. 4. Keras: High-level neural networks API. Machine learning has numerous applications across industries, including healthcare, finance, marketing, and more. Its ability to learn from data and improve over time makes it a powerful tool for solving complex problems. Thank you...🙂 $BTC $ETH $SOL $PI $AI $XAI $BGB $BNB $DOGE $SHIB $FLOKI $BONK $U2U $WUF $WHY $SUNDOG $PARTI $XRP
SUNDOG-13.76%
BTC-0.06%

Shunga o'xshash aktivlar

Mashhur kriptovalyutalar
Bozor kapitali bo'yicha eng yaxshi 8 kriptovalyuta tanlovi.
Taqqoslanadigan bozor kapitali
Bitget aktivlari orasida ushbu 8 tasi bozor qiymati bo'yicha SideShift Token ga eng yaqin hisoblanadi.